

A

MAJOR PROJECT

On

Detecting Disguised Faces With Transfer Learning

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

Abhinav Joel T (187R1A05C1)

Daphedari Kishan Prasad (187R1A05D5)

Adabala Taraka Rama Venkata Sai Hanuman (187R1A05C2)

Under the Guidance of

Dr. A. PRABHU

(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by

AICTE, New Delhi) Recognized Under Section 2(f) & 12(B) of the UGC Act.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-2022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “ Detecting Disguised Faces With

Transfer Learning ” being submitted by ABHINAV JOEL T(187R1A05C1)

DAPHEDARI KISHAN PRASAD(187R1A05D5),ADABALA TARAKA RAMA

VENKATA SAI HANUMAN(187R1A05C2) in partial fulfillment of the

requirements for the award of the degree of B.Tech in Computer Science and

Engineering to the Jawaharlal Nehru Technological University Hyderabad, is a record

of bonafide work carried out by him/her under our guidance and supervision during

the year 2021-22.

 The results embodied in this thesis have not been submitted to any other

University or Institute for the award of any degree or diploma.

Dr. A. Prabhu Dr. A. Raji Reddy

Associate Professor DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMNIER

Head Of The Department

Submitted for viva voice Examination held on ___________________________

ACKNOWLEGDEMENT

 Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express

our gratitude to the people who have been instrumental in the successful completion

of this project.

 We take this opportunity to express my profound gratitude and deep regard to

my guide Dr. A. Prabhu, Associate Professor for his exemplary guidance, monitoring

and constant encouragement throughout the project work. The blessing, help and

guidance given by him shall carry us a long way in the journey of life on which we

are about to embark. We also take this opportunity to express a deep sense of gratitude

to Project Review Committee (PRC) Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao,

Mr. A. Uday Kiran, Mr. A. Kiran Kumar, Mrs. G. Latha for their cordial support,

valuable information and guidance, which helped us in completing this task through

various stages.

 We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer

Science and Engineering for providing encouragement and support for completing this

project successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the

course of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy,

Chairman for providing excellent infrastructure and a nice atmosphere throughout the

course of this project.

 The guidance and support received from all the members of CMR Technical

Campus who contributed to the completion of the project. We are grateful for their

constant support and help.

 Finally, We would like to take this opportunity to thank our family for their

constant encouragement, without which this assignment would not be completed. We

sincerely acknowledge and thank all those who gave support directly and indirectly in

the completion of this project.

 Adabala Taraka Rama Venkata Sai Hanuman (187R1A05C2)

 Daphedari Kishan Prasad (187R1A05D5)

 Abhinav Joel T (187R1A05C1)

ABSTRACT

 In general, a human being has the memory power due to which he/she

will be able to remember whatever they have seen but as the technology is increasing

the advancement is increasing in such a way that now computer is also able to

recognize theX faces from its memory but in order to differentiate them, we need more

advancement which leads to the development of Machine learning. Machine learning

concepts developed by Arthur Manuel. There have been many techniques used over

the past decade to determine the identity of a person's face, such as Eigenfaces and

Principal Component Analysis (PCA), to Convolutional Neural Networks (CNN) to

ensure the ability to recognize faces has become further and further. An approach to

machine learning called transfer learning involves creating a model of the first training

task, then testing it using the model. The difference between transfer learning and

traditional machine learning is that translation involves using a pre-trained model in

order to start a secondary task using the initial model. It is expected that this paper will

contribute to the field of image classification by using Machine Learning algorithms

to solve the problem. Transfer learning significantly improves the performance of

VGG models Based on these results, we conclude that VGG Models are the best

choice for recognizing faces using ImageNet weight.

i

LIST OF FIGURES/TABLES

FIGURE NO FIGURE NAME PAGE NO

 Figure 3.1 Project Architecture 6

 Figure 3.3 Use Case Diagram 8

 Figure 3.4 Sequence Diagram 9

 Figure 3.5 Activity Diagram 10

 Figure 3.6 Class Diagram 11

ii

LIST OF SCREENSHOTS

SCREENSHOT NO SCREENSHOT NAME PAGE NO

Screenshot 5.1

Screenshot 5.2

Screenshot 5.3

Screenshot 5.4

iii

Output-1

Output-2

Output-3

Output-4

27

27

28

28

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

LIST OF SCREENSHOTS iii

1. INTRODUCTION 1

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2. SYSTEM ANALYSIS 2

2.1 PROBLEM DEFINITION 2

2.2 EXISTING SYSTEM 2

2.2.1 LIMITATIONS OF EXISTING SYSTEM 3

2.3 PROPOSED SYSTEM 3

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 3

2.4 FEASIBILITY STUDY 4

2.4.1 ECONOMIC FEASIBILITY 4

2.4.2 TECHNICAL FEASIBILITY 4

2.4.3 SOCIAL FEASIBILITY 5

2.5 HARDWARE & SOFTWARE REQUIREMENTS 5

2.5.1 HARDWARE REQUIREMENTS 5

2.5.2 SOFTWARE REQUIREMENTS 5

 3. ARCHITECTURE 6

 3.1 PROJECT ARCHITECTURE 6

 3.2 MODULES DESCRIPTION 6

 3.2.1 USER 6

 3.2.2 VGG16 7

 3.2.3 ResNet50 7

 3.2.4 InceptionV3 7

iv

 3.3 USECASE DIAGRAM 8

 3.4 SEQUENCE DIAGRAM 9

 3.5 ACTIVITY DIAGRAM 10

 3.6 CLASS DIAGRAM 11

4.IMPLEMENTATION 18

 4.1 SAMPLE CODE 19

5.SCREEN SHOTS 27

6.TESTING 29

 6.1 INTRODUCTION TO TESTING 29

 6.2 TYPES OF TESTING 29

 6.2.1 UNIT TESTING 29

 6.2.2 INTEGRATION TESTING 29

 6.2.3 FUNCTIONAL TESTING 30

 6.3 TEST CASES 31

7.CONCLUSION & FUTURE SCOPE 32

 7.1 PROJECT CONCLUSION 32

 7.2 FUTURE SCOPE 32

8.REFERENCES 33

 8.1 GITHUB REPOSITORY LINK 33

 8.2 REFERENCES 33

9.JOURNAL

v

1. INTRODUCTION

1.INTRODUCTION

1.1 PROJECT SCOPE

 In past decade, numerous approaches method to identifying person’s faces

which is Eigenfaces and Principal Component Analysis (PCA), to Convolutional

Neural Networks (CNN) which then after that, the ability to recognize face became

higher and higher. Transfer learning is an approach used in machine learning where

the first training task produces a model, then we do the second test using the model of

the first training task. Transfer learning differs from traditional machine learning

because it involves using a pre-trained model as a springboard to start a secondary

task.

1.2 PROJECT PURPOSE

 We compare some popular Pre-Trained CNN Model Architecture provided by

Keras which is an opensource neural network library written in Python. The

architecture we used is VGG16, VGG19, ResNet50, ResNet152 v2, InceptionV3 and

Inception-ResNet V2. From this research, we expected to see the best Pretrained

Architecture model with the highest level of accuracy, and the lowest cost function in

the optimal hyperparameter state.

1.3 PROJECT FEATURES

 We introduce a deep learning framework to first detect 14 facial key-points

which are then utilized to perform disguised face identification. Since the training

of deep learning architectures relies on large annotated datasets, two annotated

facial key-points datasets are introduced. The effectiveness of the facial key point

detection framework is presented for each key point. The superiority of the key-

point detection framework is also demonstrated by a comparison with other deep

networks. The effectiveness of classification performance is also demonstrated by

comparison with the state of-the-art face disguise classification methods.

Detecting Disguised Faces With Transfer Learning

CMRTC 1

2.SYSTEM ANALYSIS

SYSTEM ANALYSIS

 System Analysis is the important phase in the system development process. The

System is studied to the minute details and analyzed. Analysis is the process of finding

the best solution to the problem. System analysis is the process by which we learn

about the existing problems, define objects and requirements, and evaluate the

solutions. It is the way of thinking about the organization and the problem it involves,

a set of technologies that helps in solving these problems. Feasibility study plays an

important role in system analysis which gives the target for design and development.

2.1 PROBLEM DEFINITION

 From this research, we expected to see the best Pretrained Architecture model

with the highest level of accuracy, and the lowest cost function in the optimal

hyperparameter state. Dataset, which is a data set of 75 pictures of a person’s face

using a disguised tool like a bandana, masker, fake moustache, fake beard, glasses,

etcetera. Disguised face identification (DFI) is an extremely challenging problem due

to the numerous variations that can be introduced using different disguises. We

introduce a deep learning framework to first detect 14 facial key-points which are then

utilized to perform disguised face identification.

2.2 EXISTING SYSTEM

 In the Existing system disguise face detection uses PCA approach. The PCA

algorithm has an improved recognition rate for face images with large variations in

lighting direction and facial expression and the face images are divided into smaller

sub-images. The PCA approach is applied to each of these sub-images. Since some

of the local facial features of an individual do not vary even when the pose, lighting

direction and facial expression vary. The accuracy of the conventional PCA method

and modular PCA method are evaluated under the conditions of varying expression,

illumination and pose using standard face databases.

CMRTC 2

Detecting Disguised Faces With Transfer Learning

2.2.1 LIMITATIONS OF EXISTING SYSTEM

• Finding the eigenvectors and eigenvalues are time consuming on PCA. The

size and location of each face image must remain similar PCA (Eigenface)

approach maps features to principal subspaces that contain most energy.

• When a face-detection algorithm finds a face in an image or in a still from a

video capture, the relative size of that face compared with the enrolled image

size affects how well the face will be recognized.

• Algorithm: Principal Component Analysis (PCA).

2.3 PROPOSED SYSTEM

 In the proposed system, we compare some popular Pre-Trained CNN Model

Architecture provided by Keras which is an opensource neural network library written

in Python. The architecture we used is VGG16, VGG19, ResNet50 and InceptionV3.

Then, we divide into two parts: using the vector to train the classifier model, and

evaluating the accuracy and cost function of the classifier model from this research,

we expected to see the best Pretrained Architecture model with the highest level of

accuracy, and the lowest cost function in the optimal hyperparameter state. In transfer

learning, the knowledge of an already trained machine learning model is applied to a

different but related problem. For example, if you trained a simple classifier to predict

whether an image contains a backpack, you could use the knowledge that the model

gained during its training to recognize other objects like sunglasses.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

• With transfer learning a solid machine learning model can be built with

comparatively little training data because the model is already pre-trained.

• This is especially valuable in natural language processing because mostly

expert knowledge is required to create large labeled datasets.

• Additionally, training time is reduced because it can sometimes take days or

even weeks to train a deep neural network from scratch on a complex task.

Algorithm: CNN with VGG16, VGG19, ResNet50 and Inceptionv3.

Detecting Disguised Faces With Transfer Learning

CMRTC 3

2.4 FEASIBILITY STUDY

 The feasibility of the project is analyzed in this phase and business proposal is

put forth with a very general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system is to be carried out. This

is to ensure that the proposed system is not a burden to the company. Three key

considerations involved in the feasibility analysis are

• Economic Feasibility

• Technical Feasibility

• Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

 The developing system must be justified by cost and benefit. Criteria to ensure

that effort is concentrated on project, which will give best, return at the earliest. One

of the factors, which affect the development of a new system, is the cost it would

require.

 The following are some of the important financial questions asked during

preliminary investigation:

 The costs conduct a full system investigation.

 The cost of the hardware and software.

 The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual cost

to spend for the proposed system. Also, all the resources are already available

2.4.2 TECHNICAL FEASIBILITY

 This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on

the available technical resources. The developed system must have a modest

requirement, as only minimal or null changes are required for implementing this

system.

Detecting Disguised Faces With Transfer Learning

CMRTC 4

2.4.3 BEHAVIORAL FEASIBILITY

 The aspect of study is to check the level of acceptance of the system by the user.

This includes the process of training the user to use the system efficiently. The user

must not feel threatened by the system, instead must accept it as a necessity. The level

of acceptance by the users solely depends on the methods that are employed to educate

the user about the system and to make him familiar with it. His level of confidence

must be raised so that he is also able to make some constructive criticism, which is

welcomed, as he is the final user of the system.

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS:

 Hardware interfaces specifies the logical characteristics of each interface

between the software product and the hardware components of the system. The

following are some hardware requirements.

• System : i9 Processor

• Hard Disk : 500 GB

• Input Devices : Keyboard, Mouse

• Ram : 8GB

2.5.2 SOFTWARE REQUIREMENTS:

 Software Requirements specifies the logical characteristics of each interface

and software components of the system. The following are some software

requirements.

• Operating system : Windows 10/ MacOS

• Coding Language : Python, Django

• Tool : PyCharm CE

Detecting Disguised Faces With Transfer Learning

CMRTC 5

3. ARCHITECTURE

3. ARCHITECTURE

3.1 PROJECT ARCITECTURE

The project architecture shows the entire structure of the bot.

Figure 3.1 Project Architrcture

3.2 MODULES DESCRIPTION

3.2.1 USER

 The User can collect the images from web surfing. in the data folder training,

testing and validation images are available. These are classified into 3 classes those

are disguise, mask and scarf. Now user has to create the objects of Vgg16 and Vgg19

and generate models weight filed call .h5 file. This h5 file contain all the weights of

our models. At the time of generating h5 file the los function, loss accuracy, accuracy

and test accuracy will be displayed in the graph and execution time. User can test the

object detection from a video file or system camera. To process this user required high

configuration system. User can test images by help of generated models weights files.

Detecting Disguised Faces With Transfer Learning

CMRTC 6

3.2.2 VGG16

 The Vgg16 architecture comes from the VGG group, Oxford. VGG was made to

improve from the AlexNet architecture by replacing large kernel filters (11 and 5 in the

first and second convolutional layers) with some 3x3 kernel filters. With a given

receptive field, small-sized kernels that are stacked are better than large-size kernels,

because several non-linear layers increase the depth of the network which makes it

possible to learn more complex feature.

3.2.3 ResNet50

 In accordance with what has been discussed so far, namely, to improve accuracy

in the network must increase the depth of the layer, as long as it can keep over-fitting.

However, increasing the deep network does not work by simply adding layers. Deep

networks are difficult to practice because of the problem of vanishing gradients, where

gradients are repropagated to the previous layer, repeated repetition can make the

gradient very small. As a result, as the network grows, the performance becomes

saturated or even begins to degrade quickly. the basic idea of ResNet (Residual

Network) is to introduce what is called an "identity shortcut connection" that passes

through one or more layer.

3.2.4 InceptionV3

 VGG achieved phenomenal accuracy in the ImageNet dataset, but its use

requires high computation, even though it uses a GPU (Graphic Processing Unit). This

has become inefficient due to the large width of the convolutional layer used.

GoogLeNet builds on the idea that most activations in deep networks are not needed

(zero value) or excessive because of the correlation between them. Therefore, the most

efficient deep network architecture will have sparse connections between activations,

which implies that all 512 output channels will not have connections between each

other. GoogLeNet designed a module called the Inception module which numbered

roughly like a thin CNN with a solid construction. Because only a small fraction of the

neurons is effective as mentioned previously, the width/number of convolutional filters

of the kernel size is kept small. This module also uses convolution of various sizes to

capture details at various scales.

Detecting Disguised Faces With Transfer Learning

CMRTC 7

3.3 USE CASE DIAGRAM

 A use case diagram purpose is to present a graphical overview of the functionality

provided by a system in terms of actors, their goals and any dependencies between

those use cases. The main purpose of a use case diagram is to show what system

functions are performed for which actor. Roles of the actors in the system can be

depicted.

Figure 3.3: Use Case Diagram for how the system functions

Use

r

Load

Images

Pretrain System

Cam

Detect

Objects

VGG16

Model

VGG19

Model

ResNet50

Model

InceptionV3

Model

Confusion

Matrix

Detecting Disguised Faces With Transfer Learning

CMRTC 8

3.4 SEQUENCE DIAGRAM

Figure 3.4: Sequence Diagram for how processes operate with one another and

 in what order

Use

r

VGG16Mo

del

VGG19Mo

del

ResNet50

Model

 1: Load Models ()

2: Process with

Images ()

 3: Models weights

h5 file generated ()

 4: Predict the

results ()

5 : Load Models ()

() 6: Process the Models

7 : Model h5 file

genearetd

()

 8: Predicted the Images ()

9 : Result

Displayed

()

Detecting Disguised Faces With Transfer Learning

CMRTC 9

3.5 ACTIVITY DIAGRAM

Figure 3.5: Activity Diagram for step-by-step workflows of components in a

system

User

Load Pretrained Model

Model

VGG16

Vgg19

ResNet50

InceptionV3

Load User Model

Process Image

InoutImage

Predict Result

Load a video

Detect Objects

PlayVideo

Detecting Disguised Faces With Transfer Learning

CMRTC 10

3.6 CLASS DIAGRAM

Figure 3.6: Class Diagram for structure of a system by showing the system’s
relationships among the classes

User

List trainpath +

List testPath +

+ List validationPath

+ LoadVgg16Model ()

+ LoadVgg19Model ()

+ LoadResNet50Model ()

+ LoadInceptionV3Model ()

 + startDetetctionFrame()

+ StarUserModel ()

VGG16Model

+ Layers layer

+ Models model

+ Load image

+ Accuracy scores

+ models.Sequential ()

+ model.fit_generator()

 + models.load_model()

Vgg19Model

+ Layers layer

+ Models model

+ Load img images

+ Accuracy scores

() models.Sequential +

 models.fit_generator() +

models.load_model + ()

ResNet50Model

filename filepath +

img width +

+ img height

+ () load_image

+ img_to_array ()

+ decode_predictions()

Detecting Disguised Faces With Transfer Learning

CMRTC 11

4.IMPLEMENTATION

4.IMPLEMENTATON

4.1 SAMPLE CODE

1-RunFirstVideoDetection.py

from imageai.Detection import VideoObjectDetection

import os

execution_path = os.getcwd()

detector = VideoObjectDetection()

detector.setModelTypeAsYOLOv3()

detector.setModelPath(os.path.join(execution_path, "yolo.h5"))

detector.loadModel()

video_path=detector.detectObjectsFromVideo(input_file_path=os.path.join(executio

n_path,"traffic-mini.mp4"),

output_file_path=os.path.join(execution_path,"traffic_mini_detected_1"),frames_per

_second=29,log_progress=True)

print(video_path)

2-RunFirstCameraDetection.py

from imageai.Detection import VideoObjectDetection

import os

import cv2

execution_path = os.getcwd()

camera = cv2.VideoCapture(0)

detector = VideoObjectDetection()

detector.setModelTypeAsYOLOv3()

detector.setModelPath(os.path.join(execution_path, "yolo.h5"))

detector.loadModel()

video_path = detector.detectObjectsFromVideo(camera_input=camera,

output_file_path=os.path.join(execution_path,"camera_detected_1"),

frames_per_second=29,log_progress=True)

print(video_path)

Detecting Disguised Faces With Transfer Learning

CMRTC 12

3-RunTestVGG16Val.py

import numpy as np

import os

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow

from numpy.random import seed

seed(1337)

tensorflow.random.set_seed(42)

from tensorflow.python.keras.applications import vgg16

from tensorflow.python.keras.applications.vgg16 import preprocess_input

from tensorflow.python.keras.preprocessing.image import ImageDataGenerator,

load_img

from tensorflow.python.keras.callbacks import ModelCheckpoint

from tensorflow.python.keras import layers, models, Model, optimizers

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

from plot_conf import plot_confusion_matrix

train_data_dir = "data/train"

val_data_dir = "data/val"

test_data_dir = "data/test"

category_names = sorted(os.listdir('data/train'))

nb_categories = len(category_names)

img_pr_cat = []

for category in category_names:

 folder = 'data/train' + '/' + category

 img_pr_cat.append(len(os.listdir(folder)))

sns.barplot(y=category_names, x=img_pr_cat).set_title("Number of training images

per category:")

for subdir, dirs, files in os.walk('data/train'):

 for file in files:

 img_file = subdir + '/' + file

 image = load_img(img_file)

 plt.figure()

Detecting Disguised Faces With Transfer Learning

CMRTC 13

 plt.title(subdir)

 plt.imshow(image)

 break

img_height, img_width = 224,224

conv_base = vgg16.VGG16(weights='imagenet', include_top=False, pooling='max',

input_shape = (img_width, img_height, 3))

for layer in conv_base.layers:

 print(layer, layer.trainable)

model = models.Sequential()

model.add(conv_base)

model.add(layers.Dense(nb_categories, activation='softmax'))

model.summary()

#Number of images to load at each iteration

batch_size = 32

only rescaling

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

these are generators for train/test data that will read pictures #found in the defined

subfolders of 'data/'

print('Total number of images for "training":')

train_generator = train_datagen.flow_from_directory(train_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

class_mode = "categorical")

print('Total number of images for "validation":')

val_generator = test_datagen.flow_from_directory(

val_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

class_mode = "categorical",

shuffle=False)

print('Total number of images for "testing":')

test_generator = test_datagen.flow_from_directory(test_data_dir,

target_size = (img_height, img_width),

Detecting Disguised Faces With Transfer Learning

CMRTC 14

batch_size = batch_size,

class_mode = "categorical",

shuffle=False)

learning_rate = 5e-5

epochs = 2

checkpoint =ModelCheckpoint("vgg16_classifier.h5", monitor = 'val_acc',

verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)

model.compile(loss="categorical_crossentropy",optimizer=tensorflow.optimizers.A

dam(lr=learning_rate, clipnorm = 1.), metrics = ['acc'])

history = model.fit_generator(train_generator, epochs=epochs, shuffle=True,

 validation_data=val_generator,callbacks=[checkpoint])

model = models.load_model("vgg16_classifier.h5")

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1,len(acc)+1)

plt.figure()

plt.plot(epochs, acc, 'b', label = 'Training accuracy')

plt.plot(epochs, val_acc, 'r', label='Validation accuracy')

plt.title('Training and validation accuracy')

plt.legend()

plt.savefig('Accuracy.jpg')

plt.figure()

plt.plot(epochs, loss, 'b', label = 'Training loss')

plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.savefig('VGG16Loss.jpg')

Y_pred = model.predict_generator(test_generator)

y_pred = np.argmax(Y_pred, axis=1)

cm = confusion_matrix(test_generator.classes, y_pred)

plot_confusion_matrix(cm, classes = category_names, title='Confusion Matrix',

normalize=False, figname = 'VGG16_Confusion_matrix_concrete.jpg')

Detecting Disguised Faces With Transfer Learning

CMRTC 15

accuracy = accuracy_score(test_generator.classes, y_pred)

print("Accuracy in test set: %0.1f%% " % (accuracy * 100))

conv_base = vgg16.VGG16(weights='imagenet', include_top=False, pooling='max',

input_shape = (img_width, img_height, 3))

#for layer in conv_base.layers[:-13]:

layer.trainable = False

model = models.Sequential()

model.add(conv_base)

model.add(layers.Dense(nb_categories, activation='softmax'))

train_datagen=

ImageDataGenerator(rescale=1./255,rotation_range=10,zoom_range=0.1,

width_shift_range=0.1,height_shift_range=0.1, horizontal_flip=False,

 brightness_range = (0.9,1.1),fill_mode='nearest')

this is a generator that will read pictures found in

subfolers of 'data/train', and indefinitely generate

batches of augmented image data

train_generator = train_datagen.flow_from_directory(

train_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

#save_to_dir='augm_images',

save_prefix='aug',

save_format='jpg',

class_mode = "categorical")

learning_rate = 5e-5

epochs = 2

checkpoint = ModelCheckpoint("vgg16_classifier_augm.h5", monitor='val_acc',

verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)

model.compile(loss="categorical_crossentropy",

optimizer=optimizers.Adam(lr=learning_rate, clipnorm=1.), metrics = ['acc'])

history = model.fit_generator(train_generator, epochs=epochs,

shuffle=True,validation_data=test_generator,callbacks=[checkpoint])

model = models.load_model("vgg16_classifier_augm.h5")

acc = history.history['acc']

Detecting Disguised Faces With Transfer Learning

CMRTC 16

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1,len(acc)+1)

plt.figure()

plt.plot(epochs, acc, 'b', label = 'Training accuracy')

plt.plot(epochs, val_acc, 'r', label='Validation accuracy')

plt.title('Training and validation accuracy')

plt.legend()

plt.savefig('Vgg16Accuracy_Augmented.jpg')

plt.figure()

plt.plot(epochs, loss, 'b', label = 'Training loss')

plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.savefig('VGG16Loss_Augmented.jpg')

Y_pred = model.predict_generator(test_generator)

y_pred = np.argmax(Y_pred, axis=1)

cm_aug = confusion_matrix(test_generator.classes, y_pred)

plot_confusion_matrix(cm_aug, classes = category_names, title='Confusion Matrix',

normalize=False, figname = 'Vgg16Confusion_matrix_Augm.jpg')

accuracy = accuracy_score(test_generator.classes, y_pred)

print("Accuracy in test set: %0.1f%% " % (accuracy * 100))

'''

test_subset_data_dir = "data/test_subset"

test_subset_generator = test_datagen.flow_from_directory(

test_subset_data_dir,

batch_size = batch_size,

target_size = (img_height, img_width),

class_mode = "categorical",

shuffle=False)

Y_pred = model.predict_generator(test_subset_generator)

y_pred = np.argmax(Y_pred, axis=1)

Detecting Disguised Faces With Transfer Learning

CMRTC 17

img_nr = 0

for subdir, dirs, files in os.walk('data/test_subset'):

 for file in files:

 img_file = subdir + '/' + file

 image = load_img(img_file,target_size=(img_height,img_width))

 pred_emotion = category_names[y_pred[img_nr]]

 real_emotion = category_names[test_subset_generator.classes[img_nr]]

 plt.figure()

 plt.title('Predicted: ' + pred_emotion + '\n' + 'Actual: ' + real_emotion)

 plt.imshow(image)

 img_nr = img_nr +1

'''

4-RunTestVGG19Val.py

import numpy as np

import os

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow

from numpy.random import seed

seed(1337)

tensorflow.random.set_seed(42)

from tensorflow.python.keras.applications import vgg19

from tensorflow.python.keras.applications.vgg19 import preprocess_input

from tensorflow.python.keras.preprocessing.image import ImageDataGenerator,

load_img

from tensorflow.python.keras.callbacks import ModelCheckpoint

from tensorflow.python.keras import layers, models, Model, optimizers

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

from plot_conf import plot_confusion_matrix

train_data_dir = "data/train"

val_data_dir = "data/val"

test_data_dir = "data/test"

Detecting Disguised Faces With Transfer Learning

CMRTC 18

category_names = sorted(os.listdir('data/train'))

nb_categories = len(category_names)

img_pr_cat = []

for category in category_names:

 folder = 'data/train' + '/' + category

 img_pr_cat.append(len(os.listdir(folder)))

sns.barplot(y=category_names, x=img_pr_cat).set_title("Number of training images

per category:")

for subdir, dirs, files in os.walk('data/train'):

 for file in files:

 img_file = subdir + '/' + file

 image = load_img(img_file)

 plt.figure()

 plt.title(subdir)

 plt.imshow(image)

 break

img_height, img_width = 224,224

conv_base = vgg19.VGG19(weights='imagenet', include_top=False, pooling='max',

input_shape = (img_width, img_height, 3))

for layer in conv_base.layers:

 print(layer, layer.trainable)

model = models.Sequential()

model.add(conv_base)

model.add(layers.Dense(nb_categories, activation='softmax'))

model.summary()

#Number of images to load at each iteration

batch_size = 32

only rescaling

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

these are generators for train/test data that will read pictures #found in the defined

subfolders of 'data/'

print('Total number of images for "training":')

train_generator = train_datagen.flow_from_directory(

Detecting Disguised Faces With Transfer Learning

CMRTC 19

train_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

class_mode = "categorical")

print('Total number of images for "validation":')

val_generator = test_datagen.flow_from_directory(

val_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

class_mode = "categorical",

shuffle=False)

print('Total number of images for "testing":')

test_generator = test_datagen.flow_from_directory(

test_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

class_mode = "categorical",

shuffle=False)

learning_rate = 5e-5

epochs = 2

checkpoint = ModelCheckpoint("vgg19_classifier.h5",monitor ='val_acc', verbose=1,

save_best_only=True, save_weights_only=False, mode='auto', period=1)

model.compile(loss="categorical_crossentropy",

optimizer=optimizers.Adam(lr=learning_rate, clipnorm = 1.), metrics = ['acc'])

history = model.fit_generator(train_generator, epochs=epochs, shuffle=True,

validation_data=val_generator,callbacks=[checkpoint])

model = models.load_model("vgg19_classifier.h5")

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1,len(acc)+1)

plt.figure()

plt.plot(epochs, acc, 'b', label = 'Training accuracy')

Detecting Disguised Faces With Transfer Learning

CMRTC 20

plt.plot(epochs, val_acc, 'r', label='Validation accuracy')

plt.title('Training and validation accuracy')

plt.legend()

plt.savefig('Accuracy.jpg')

plt.figure()

plt.plot(epochs, loss, 'b', label = 'Training loss')

plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.savefig('VGG19Loss.jpg')

Y_pred = model.predict_generator(test_generator)

y_pred = np.argmax(Y_pred, axis=1)

cm = confusion_matrix(test_generator.classes, y_pred)

plot_confusion_matrix(cm, classes = category_names, title='Confusion Matrix',

normalize=False, figname = 'VGG19_Confusion_matrix_concrete.jpg

accuracy = accuracy_score(test_generator.classes, y_pred)

print("Accuracy in test set: %0.1f%% " % (accuracy * 100))

conv_base = vgg19.VGG19(weights='imagenet', include_top=False, pooling='max',

input_shape = (img_width, img_height, 3))

#for layer in conv_base.layers[:-13]:

layer.trainable = False

model = models.Sequential()

model.add(conv_base)

model.add(layers.Dense(nb_categories, activation='softmax'))

train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=10,

zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1,

horizontal_flip=False,brightness_range = (0.9,1.1),fill_mode='nearest')

this is a generator that will read pictures found in

subfolers of 'data/train', and indefinitely generate

batches of augmented image data

train_generator = train_datagen.flow_from_directory(

train_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

Detecting Disguised Faces With Transfer Learning

CMRTC 21

#save_to_dir='augm_images',

save_prefix='aug',

save_format='jpg',

class_mode = "categorical")

learning_rate = 5e-5

epochs = 2

checkpoint = ModelCheckpoint("vgg19_classifier_augm.h5", monitor='val_acc',

verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)

model.compile(loss="categorical_crossentropy",

optimizer=optimizers.Adam(lr=learning_rate, clipnorm=1.), metrics = ['acc'])

history=model.fit_generator(train_generator,epochs=epochs,shuffle=True,

validation_data=test_generator, callbacks=[checkpoint])

model = models.load_model("vgg19_classifier_augm.h5")

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1,len(acc)+1)

plt.figure()

plt.plot(epochs, acc, 'b', label = 'Training accuracy')

plt.plot(epochs, val_acc, 'r', label='Validation accuracy')

plt.title('Training and validation accuracy')

plt.legend()

plt.savefig('Vgg19Accuracy_Augmented.jpg')

plt.figure()

plt.plot(epochs, loss, 'b', label = 'Training loss')

plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.savefig('VGG19Loss_Augmented.jpg')

Y_pred = model.predict_generator(test_generator)

y_pred = np.argmax(Y_pred, axis=1)

cm_aug = confusion_matrix(test_generator.classes, y_pred)

Detecting Disguised Faces With Transfer Learning

CMRTC 22

plot_confusion_matrix(cm_aug, classes = category_names, title='Confusion Matrix',

normalize=False, figname = 'Vgg19Confusion_matrix_Augm.jpg')

accuracy = accuracy_score(test_generator.classes, y_pred)

print("Accuracy in test set: %0.1f%% " % (accuracy * 100))

'''

test_subset_data_dir = "data/test_subset"

test_subset_generator = test_datagen.flow_from_directory(

test_subset_data_dir,

batch_size = batch_size,

target_size = (img_height, img_width),

class_mode = "categorical",

shuffle=False)

Y_pred = model.predict_generator(test_subset_generator)

y_pred = np.argmax(Y_pred, axis=1)

img_nr = 0

for subdir, dirs, files in os.walk('data/test_subset'):

 for file in files:

 img_file = subdir + '/' + file

 image = load_img(img_file,target_size=(img_height,img_width))

 pred_emotion = category_names[y_pred[img_nr]]

 real_emotion = category_names[test_subset_generator.classes[img_nr]]

 plt.figure()

 plt.title('Predicted: ' + pred_emotion + '\n' + 'Actual: ' + real_emotion)

 plt.imshow(image)

 img_nr = img_nr +1

'''

5-ResNet50-Code.py

import PIL

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

from keras.applications.imagenet_utils import decode_predictions

import matplotlib.pyplot as plt

Detecting Disguised Faces With Transfer Learning

CMRTC 23

import numpy as np

from keras.applications.resnet50 import ResNet50

from keras.applications import resnet50

filename = '371.jpg'

original = load_img(filename, target_size = (224, 224))

print('PIL image size',original.size)

plt.imshow(original)

plt.show()

#convert the PIL image to a numpy array

numpy_image = img_to_array(original)

plt.imshow(np.uint8(numpy_image))

print('numpy array size',numpy_image.shape)

Convert the image / images into batch format

image_batch = np.expand_dims(numpy_image, axis = 0)

print('image batch size', image_batch.shape)

processed_image = resnet50.preprocess_input(image_batch.copy())

create resnet model

resnet_model = resnet50.ResNet50(weights = 'imagenet')

get the predicted probabilities for each class

predictions = resnet_model.predict(processed_image)

convert the probabilities to class labels

label = decode_predictions(predictions)

print(label)

6-InceptionV3-Code.py

from keras.applications.inception_v3 import InceptionV3

load model

model = InceptionV3()

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

from keras.applications.vgg16 import preprocess_input

from keras.applications.vgg16 import decode_predictions

load an image from file

Detecting Disguised Faces With Transfer Learning

CMRTC 24

image = load_img('371.jpg', target_size=(299, 299))

convert the image pixels to a numpy array

image = img_to_array(image)

reshape data for the model

image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))

prepare the image for the VGG model

image = preprocess_input(image)

predict the probability across all output classes

yhat = model.predict(image)

convert the probabilities to class labels

label = decode_predictions(yhat)

retrieve the most likely result, e.g. highest probability

label = label[0][0]

print the classification

print('%s (%.2f%%)' % (label[1], label[2]*100))

7-TestOwnModels.py

import PIL

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

from keras.applications.imagenet_utils import decode_predictions

from tensorflow.python.keras.models import load_model

import matplotlib.pyplot as plt

import numpy as np

from keras.applications.resnet50 import ResNet50

from keras.applications import resnet50

filename = '43.jpg'

original = load_img(filename, target_size = (224, 224))

print('PIL image size',original.size)

plt.imshow(original)

plt.show()

#convert the PIL image to a numpy array

numpy_image = img_to_array(original)

Detecting Disguised Faces With Transfer Learning

CMRTC 25

plt.imshow(np.uint8(numpy_image))

print('numpy array size',numpy_image.shape)

Convert the image / images into batch format

image_batch = np.expand_dims(numpy_image, axis = 0)

print('image batch size', image_batch.shape)

processed_image = resnet50.preprocess_input(image_batch.copy())

modelpath = 'vgg19_classifier.h5'

create resnet model

resnet_model = load_model(modelpath) #resnet50.ResNet50(weights = 'imagenet')

get the predicted probabilities for each class

predictions = resnet_model.predict(processed_image)

categories = ["disguise", "mask","scarf"]

print(categories[int(predictions[0][0])])

convert the probabilities to class labels

#label = decode_predictions(predictions)

#print(label)

Detecting Disguised Faces With Transfer Learning

CMRTC 26

5.SCREENSHOTS

5.SCREENSHOTS

5.1 OUTPUT - 1

Screenshot 5.1: Output-1

5.2 OUTPUT – 2

Screenshot 5.2: Ouput-2

Detecting Disguised Faces With Transfer Learning

CMRTC 27

5.3 OUTPUT-3

Screenshot 5.3: Output-3

 5.4 OUTPUT-4

Screenshot 5.4: Output-4

Detecting Disguised Faces With Transfer Learning

CMRTC 28

6.TESTING

6. TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to

discover every conceivable fault or weakness in a work product. It provides a way to

check the functionality of components, subassemblies, assemblies and/or a finished

product. It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in an

unacceptable manner. There are various types of tests. Each test type addresses a

specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNITTESTING

 Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application. It is done after the completion of an

individual unit before integration. This is a structural testing that relies on knowledge

of its construction and is invasive. Unit tests perform basic tests at component level

and test a specific business process, application, and/or system configuration. Unit tests

ensure that each unique path of a business process performs accurately to the

documented specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if

they actually run as one program. Testing is event driven and is more concerned with

the basic outcome of screens or fields. Integration tests demonstrate that although the

components were individually satisfactory, as shown by successfully unit testing, the

combination of components is correct and consistent. Integration testing is specifically

aimed at exposing the problems that arise from the combination of components.

Detecting Disguised Faces With Transfer Learning

CMRTC 29

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are available

as specified by the business and technical requirements, system documentation, and

user manuals

Functional testing is centered on the following items:

Valid Input : Identified classes of valid input must be accepted.

Invalid Input : Identified classes of invalid input must be rejected.

Functions : Identified functions must be exercised.

Output : Identified classes of application outputs must be

 exercised.

Systems/Procedures : Interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to

identifying Business process flows; data fields, predefined processes.

Detecting Disguised Faces With Transfer Learning

CMRTC 30

6.3 TEST CASES

S.no Test Case
Excepted

Result
Result

Remarks(IF

Fails)

1.

User Has to

locate the

image path

User can keep

training images,

testing images and

validation images

under data folder

Pass
If images not

available then failed

2.

 Start the

system

cameras or pre

video files

Detect the objects

from given video

files

Pass
CNN Model

required

3.

Detected

object play

again the

video

All frames playing

again.
Pass

Video file .avi

format required

4.

Create object

of VGG16

Model

VGG16 Model

object creates and

process.

Pass
Vgg16 has to install

in the system

5.

Generate the

h5 weights

files

Loaded Model .H5

file will generate

and stores in

system drive

Pass
If model not trained

the failed

6.
Load VGG19

Model

VGG19 Model

loaded
Pass

Vgg16 Model ahs to

Load

7.

Load the

ResNet50

Models

ResNet50 Model

loaded and object

created

Pass
ResNet has to

install.

8.

Load

InceptionV3

model

Inception V3

Model has to load
Pass

First Inception V3

Model has to load

9.
Test user

images

User has to test its

own images
Pass

To test created

models weight

required

10.

Confusion

Matrix

generated

Confusion Matrix

for Vgg16 and

Vgg19 Models

Pass
If model not trained

the failed

Detecting Disguised Faces With Transfer Learning

CMRTC 31

7. CONCLUSION

7. CONCLUSION & FUTURE SCOPE

7.1 PROJECT CONCLUSION

 In this project, we propose a comparison of six popular CNN

Models to recognizing the disguised person’s face using “Recognizing

Disguised Faces” datasets, and the findings are how Transfer Learning be

used in Face Verification problem. In training result shows that the VGG

model has balance accuracy of training and validation, and the other side,

the ResNet152 v2 Model has a better accuracy than VGG in train set. But

in the test result shows, that VGG model is the highest performance than

other CNN Models. We then conclude that ImageNet weight can be used

for Transfer Learning to Recognize face using VGG Model. The success

of this Convolutional Neural Network is also the main reason why Deep

Learning CNN has been such a hot topic in recent years.

7.2 FUTURE SCOPE

 As a future research direction, we plan to encode and

incorporate the concept of familiarity in automatic algorithms which may

improve the performance. Further, we also believe that the study of how

disguising individual facial parts affect representations of faces might

lead to better solutions to mitigate these variations.

Detecting Disguised Faces With Transfer Learning

CMRTC 32

8.BIBLIOGRAPHY

 8.BIBLIOGRAPHY

8.1 GITHUB REPOSITORY LINK

https://github.com/AbhinavJoel/major-Project

https://github.com/hanuman-adabala/Major-project-batch6

https://github.com/KishanPrasadD/Detecting-Disguised-Faces-With-

Transfer-Learning.git

8.2 REFERENCES

[1] A. Samuel, "Some Studies in Machine Learning Using the Game of Checkers," IBM

Journal of Research and Development, vol. 3, no. 3, p. 210–229, 1959.

[2] M. A. Turk and A. P. Pentland, "Face recognition using eigenfaces," IEEE

Conference on Computer Vision and Pattern Recognition, vol. 1, p. pp. 586–591, 1991.

[3] J. Yang, D. Zhang, A. F. Frangi and J. Yang, "Two dimensional PCA : a new

approach to appearance-based face representation and recognition," IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, p. 131–137, 2004.

[4] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "Deepface: Closing the gap to

human-level performance in face verification," CVPR, p. 1701–1708, 2014..

[5] J. West, D. Ventura and S. Warnick, "A Theoretical Foundation for Inductive

Transfer," Spring Research Presentation, 2007.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama

and a. T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," in

ACM MM, 2014.

[7] D. Tomé, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi and S. Tubaro, "Deep

Convolutional Neural Networks for pedestrian detection," Signal Processing: Image

Communication, vol. 47, pp. 482-489, 2016.

 [8] Z. Deng, H. Sun, S. Zhou, J. Zhao and H. Z. Lin Lei, "Multi-scale object detection

in remote sensing imagery with convolutional neural networks," ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 145, no. Part A, pp. 3-22, 2018.

Detecting Disguised Faces With Transfer Learning

CMRTC 33

https://github.com/AbhinavJoel/major-Project
https://github.com/hanuman-adabala/Major-project-batch6
https://github.com/KishanPrasadD/Detecting-Disguised-Faces-With-Transfer-Learning.git
https://github.com/KishanPrasadD/Detecting-Disguised-Faces-With-Transfer-Learning.git

9. JOURNAL

Detecting Disguised Faces With Transfer Learning

	UGC AUTONOMOUS
	INTERNAL GUIDE
	Adabala Taraka Rama Venkata Sai Hanuman (187R1A05C2)
	ABSTRACT i
	LIST OF FIGURES ii LIST OF SCREENSHOTS iii
	3. ARCHITECTURE 6
	1.INTRODUCTION
	1.3 PROJECT FEATURES
	SYSTEM ANALYSIS
	2.1 PROBLEM DEFINITION
	2.2 EXISTING SYSTEM
	2.2.1 LIMITATIONS OF EXISTING SYSTEM

	2.3 PROPOSED SYSTEM
	2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

	2.4 FEASIBILITY STUDY
	2.4.1 ECONOMIC FEASIBILITY
	2.4.2 TECHNICAL FEASIBILITY
	2.4.3 BEHAVIORAL FEASIBILITY

	2.5 HARDWARE & SOFTWARE REQUIREMENTS
	2.5.1 HARDWARE REQUIREMENTS:
	2.5.2 SOFTWARE REQUIREMENTS:

	3. ARCHITECTURE
	3. ARCHITECTURE
	3.1 PROJECT ARCITECTURE
	3.2 MODULES DESCRIPTION
	3.2.1 USER
	3.2.2 VGG16
	3.2.3 ResNet50
	3.2.4 InceptionV3

	3.4 SEQUENCE DIAGRAM
	3.5 ACTIVITY DIAGRAM
	3.6 CLASS DIAGRAM

	4.IMPLEMENTATION
	4.IMPLEMENTATON
	4.1 SAMPLE CODE
	5.SCREENSHOTS

	6.2 TYPES OF TESTING

	7.2 FUTURE SCOPE

